

Visual Execution Analysis for
Multiagent Systems

THESIS

Chong Kyung Kil, Captain, ROKA

AFIT/GCS/ENG/02-12

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/02-12

Visual Execution Analysis for Multiagent Systems

THESIS

Presented to the faculty of the Graduate School of Engineering & Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

Chong Kyung Kil, B.S. Computer Science

Captain, ROKA

August 2002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/02-12

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or United States Government.

AFIT/GCS/ENG/02-12

VISUAL EXECUTION ANALYSIS FOR

MULTIAGENT SYSTEMS

THESIS

Chong Kyung Kil, B.S. Computer Science

Captain, ROKA

ACKNOWLEDGMENTS

I would first like to thank my advisor, Lieutenant Colonel Timothy Jacobs, for his

guidance and patience throughout the course of this thesis effort. His insight and

experience was certainly appreciated, and his teaching provided a wealth of knowledge

that enabled me to complete this thesis. Thanks to Major Mathias and Dr. Lamont for

invaluable advice and for serving on my thesis committee. Thanks to my sponsor, Air

Force Office of Scientific Research, for the support provided to me in this endeavor. I

would also like to thank my tutor, Terence C Black, from Headquarters Air Force

Material Command, for suggestions and proofreading.

Most importantly, I would like to express great appreciation to my wife and my

daughter for their understanding, love and sacrifice over the past 20 months. Without

their support, completion of this thesis would have been impossible.

 iv

AFIT/GCS/ENG/02-12

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

LIST OF FIGURES ... viii

ABSTRACT.. x

I. Introduction ... 1

1.1 Background... 2

1.2 Problem Statement .. 3

1.3 Approach ... 4

1.4 Thesis Overview ... 4

II. Background .. 5

2.1 Overview... 5

2.2 Agents ... 6

2.3 Multiagent System .. 9

2.4 Agent Platforms .. 10

2.5 Agent Communication Language (ACL).. 14

2.6 Agent Conversation... 16

2.7 Visualization of Agent-Based Systems ... 17

2.8 Multiagent System Engineering (MaSE) .. 22

2.9 Summary ... 24

III. Methodology... 26

3.1 Introduction... 26

 v

AFIT/GCS/ENG/02-12

3.2 Profiling Run-Time Data .. 27

3.3 Behavior Analysis ... 30

3.4 Semantic Performance Analysis ... 34

3.5 Summary ... 35

IV. Design and Implementation .. 36

4.1 Introduction... 36

4.2 Design Consideration.. 37

4.3 Agent Based Visualization .. 38

4.4 The Visualization Process ... 42

4.4.1 Example Multiagent System.. 43

4.4.2 Select Target Agents... 44

4.4.3 Create Agents’ Visual Structures.. 46

4.4.4 Select Target Conversations / Create Conversations’ Visual Structures 47

4.4.5 Data Collection .. 49

4.4.6 Data Presentation ... 52

4.5 Summary ... 52

V. Visual Execution Analysis .. 54

5.1 Introduction... 54

5.2 Requirements .. 54

5.3 System Analysis Using Multiple Views.. 56

5.3.1 Agent Relationship View ... 57

5.3.2 Conversation Flow View.. 62

 vi

AFIT/GCS/ENG/02-12

5.3.3 Strip View .. 65

5.3.4 Statistics View.. 65

5.3.5 Visualizing the Errors... 66

5.3.6 Replaying System Execution Behavior ... 68

5.4 Summary ... 68

VI. Results... 70

6.1 Introduction... 70

6.2 Analysis... 70

6.3 Summary ... 72

6.4 Future Work .. 73

Bibliography ... 75

Vita.. 79

 vii

AFIT/GCS/ENG/02-12

LIST OF FIGURES

Figure 1. agentMom Architecture ... 12

Figure 2. Example of an ACL Message .. 14

Figure 3. A Finite State Automaton for an Agent Conversation 17

Figure 4. Example of ZEUS Society Viewer .. 19

Figure 5. Visualization of Agent Messaging Behavior ... 20

Figure 6. Colored Petri Net for Request Conversation ... 20

Figure 7. MaSE Analysis and Design Phases [8].. 23

Figure 8. MaSE Agent Template Diagram for a Package Express System....................... 24

Figure 9. The Visual Execution Analysis.. 26

Figure 10. a Role Diagram in a Ticket Searching System .. 32

Figure 11. "Find a Ticket" Task Diagram ... 33

Figure 12. Information Visualization Steps .. 38

Figure 13. Agent-based Visualization ... 39

Figure 14. An Example of Agent Based Visualization System Configuration 41

Figure 15. The Visualization Process.. 42

Figure 16. C3I Simulation System Architecture ... 43

Figure 17. Select Target Agents with a VisAnalysis Agent .. 46

Figure 18. Create Agents Visual Structures .. 47

Figure 19. Select Target Conversation / Create Visual Structures 48

Figure 20. Employ InfoGathering Agents... 50

 viii

AFIT/GCS/ENG/02-12

Figure 21. Modified agentMom for data collection.. 51

Figure 22. Agent Relationship View of C3I System... 58

Figure 23. Message View listing all messages between 1st_Div and Intelligence 60

Figure 24. Content View depicting details of the object in the message 60

Figure 25. Agent Relationship View displaying various kinds of information................. 61

Figure 26. Conversation Flow View Dialog ... 62

Figure 27. Conversation Flow View displaying 1220 messages 63

Figure 28. Strip View displaying messages sorted by Sender .. 65

Figure 29. Statistic View presenting message delay summary & message usage summary

... 66

Figure 30. Agent Relation and Strip Views displaying Errors .. 67

Figure 31. Replaying System Execution with Strip View .. 68

 ix

AFIT/GCS/ENG/02-12

ABSTRACT

Multiagent systems have become increasingly important in developing complex

software systems. Multiagent systems introduce collective intelligence and provide

benefits such as flexibility, scalability, decentralization, and increased reliability. A

software agent is a high-level software abstraction that is capable of performing given

tasks in an environment without human intervention. Although multiagent systems

provide a convenient and powerful way to organize complex software systems,

developing such system is very complicated. To help manage this complexity this

research develops a methodology and technique for analyzing, monitoring and

troubleshooting multiagent systems execution. This is accomplished by visualizing a

multiagent system at multiple levels of abstraction to capture the relationships and

dependencies among the agents.

 x

Visual Execution Analysis for Multiagent Systems

I. Introduction

High-speed networks, Internet computing, and online communications expedite

the progress of collaborative software systems. People in the early days of computer

history did not expect resource sharing, distributed computing, and many other types of

collaborative software systems. Nowadays, such cooperative software systems are very

popular in industry and academic research areas. It is a common idea that sharing

resources and information with other people helps solve complex problems using the

combined knowledge.

Multiagent system technologies came from the same idea of collaborative

software systems. A multiagent system comprises multiple software agents that perform

given tasks, without direct human intervention, to achieve the overall system goal. In a

multiagent system, each agent has well-structured roles with tasks to achieve a set of

predefined goals. Agents can decide their behavior according to the knowledge given to

them and they can communicate with each other via conversations to overcome the

limitations of their knowledge and capabilities.

Before a multiagent system can be trusted to execute its behavior as expected,

program execution analysis must be performed as is done during development of many

other software systems. The execution analysis of multiagent systems includes profiling

 1

run-time data, analyzing agent behavior, and analyzing system performance. This thesis

effort designs and implements a methodology that enables developers to analyze,

troubleshoot, and evaluate multiagent systems using visualization techniques along with

agent technology.

1.1 Background

Multiagent system technologies are worth developing as solutions for military

software systems where the collaboration of resource and information is essential for the

military missions. Military software systems need to provide independent services to

their own forces for tactical goals, and they need to perform various collaborative tasks

with other systems to achieve high-level strategic goals. Flexibility is an important

aspect of military software systems to adapt to the rapid changes of the battle

environments. Distributed information management in the Joint Battlespace Infosphere

(JBI) is a good example of how an agent-based system might be exploited for designing

“fuselets.” A fuselet is a key element for providing the timely and customized

information required by the JBI [16; 17]. Fuselets can be mapped to agents that

automatically manage a variety of information on behalf of human operators. Control of

Agent-Based Systems (CoABS) is another example of the use of agent technology.

CoABS utilizes agents to enhance the dynamic connection and operation of military

planning, command, execution, and combat support systems [3].

The Air Force Institute of Technology has developed the Multiagent Systems

Engineering (MaSE) methodology for designing and developing a multiagent system

 2

[9:4]. This work includes a java-based graphical development tool, called agentTool, to

support MaSE methodology. agentTool helps developers analyze, design, and

implement multiagent systems by providing visual diagrams for describing complex

multiagent systems behavior. Researchers have successfully used MaSE and agentTool

for a number of multiagent systems, however, troubleshooting and analyzing these

systems has proven difficult.

1.2 Problem Statement

The behavior of multiagent systems is extremely difficult to predict and analyze.

A multiagent system has no global control of program executions and agents run on

different processors to achieve given tasks independently. Complexity is increased by

asynchronous agent interactions and complicated synchronizations for sharing resources

and integrating each process’s results. Even worse, an analyst has to deal with a large

amount of data since a multiagent system entails thousands of message exchanges

between agents.

Graphical representations of information are a powerful tool for understanding,

analyzing, and relating large quantities of data. Visualization techniques can greatly

improve program understanding and execution analysis in a distributed environment by

allowing developers to see high-level abstract views of the system.

To ensure a multiagent system’s functionality and behavior, developers must be

able to analyze and troubleshoot the multiagent system. Therefore, the goal of this

research is to develop a visual program execution analysis methodology for analyzing,

 3

monitoring, and troubleshooting multiagent systems. This is accomplished by

visualizing the program at multiple levels of abstraction to capture the relationships and

dependencies among the processes.

1.3 Approach

To achieve the goals of this research, a generic program execution analysis

methodology is developed for analyzing multiagent systems. To support this

methodology this research includes an agent-based visualization system that

demonstrates the capabilities and benefits of the methodology. The architecture of the

agent-based visualization system provides a unique way to improve the visualization

system’s performance. Several visualization techniques are integrated into the

visualization system to help developers understand, analyze, and troubleshoot multiagent

systems.

1.4 Thesis Overview

Chapter 2 provides a review of literature including software agents, multiagent

systems, and agent infrastructures. Chapter 3 outlines the methodology for obtaining

the goal stated above in Section 1.2. Chapter 4 presents design considerations and

related details of implementing a visual execution analysis system. The agent-based

visualization system and its architecture are described in this chapter. Chapter 5

describes the application of the visual execution analysis methodology for analyzing and

troubleshooting a multiagent system. Chapter 6 compares this research to previous

works, and presents conclusions and future work.

 4

II. Background

2.1 Overview

This chapter reviews agent related knowledge and techniques that have been

developed up to now. Recent software development trends show that software systems

are becoming much more complex to meet various users’ requirements. Distributed

systems are becoming popular to utilize computer networks and to increase available

computing power by integrating many computers. Software development lifecycles are

being shortened due to frequent modifications of systems.

Software agent technology is popular in distributed software development

research. Software agent technology introduces a new way to manage software

complexity by describing software systems with high-level abstractions such as

organizations, tasks, roles, and so forth. A software agent is capable of operating as a

standalone process and performing actions without user intervention. It is a very

appealing idea that software agents can perform complex tasks on a user’s behalf.

However, designing agent-based system has proven difficult since developers need

specialized skills and knowledge in a variety of areas including agent architecture,

communications technology, knowledge representation, and agent communication

languages and protocols.

Such agent related knowledge and related literature must be reviewed to

effectively design a visual execution analysis system for agent-based systems. Section

 5

2.2 addresses what software agents are, different kinds of software agents, and why they

are preferred in the distributed software development research area. Section 2.3 outlines

multiagent systems and their application areas. Section 2.4 explains agent platforms and

specifically the agentMom programming interface that is applied for this research.

Section 2.5 describes various types of agent communication languages used in agent-

based systems. Section 2.6 presents agent conversations and how they are described.

Section 2.7 reviews past works that relate to agent-based system visualization. Section

2.8 introduces the Multiagent Systems Engineering (MaSE) methodology and an

automated tool for MaSE, agentTool, that is utilized in this research to develop a

visualization system. Section 2.9 summarizes this chapter.

2.2 Agents

There is no standard definition of an agent, but an agent is considered as a self-

controlling problem solving entity that has the following basic attributes [19:352]:

- Autonomy: agents perform given tasks without the intervention of humans

or other agents. Agents should control their internal (software) and

external (hardware) state by their own decisions.

- Social ability: agents interact with other agents to solve problems. This

requires that agents must have communication capability to exchange views

with related agents about a matter. Agents may collaborate or compete

with other agents in different situations to share knowledge or to acquire

limited resources for solving problems.

 6

- Reactivity: agents perceive and respond to the given environment using

their sensibility. The environment may be a variety of circumstances such

as the physical world or the Internet.

- Proactiveness: agents are able to generate goals and execute tasks to achieve

the goals. Agents decide their behaviors depending on the goal

accomplishment conditions.

In addition to these basic attributes, agents may exhibit other attributes such as

adaptability, mobility, and rationality [19; 35].

Agents can be classified into several categories depending on their characteristics

or application areas [28:214-239]. Collaborative agents are the most common type of

agent shown in agent related literature. Cooperation among agents is the major

characteristic of collaborative agents since they are mainly used to solve problems that

are too large or difficult to achieve by a single agent due to resource limitations or

computing power. Interface agents facilitate developers’ understanding of a particular

application or an operating system. Mobile agents have a capability of traveling across

the network to overcome limited local resources. Recently, much research has been

contributed to solve the problems for developing mobile agents. Such problems include

authentication, security, transportation, and interoperability of mobile agents.

Information agents help developers manage lots of information such as information

retrieval from World Wide Web documents or a large database. Reactive agents

perceive the given environment and respond it. Reactive agents do not have knowledge

 7

of their environment; instead, they act and respond in a stimulus-response manner to

perform given tasks. Hybrid agents are the last type of agents. Hybrid agents are

constructed by combination of two or more types of agents reviewed so far.

There are a number of compelling reasons to exploit agents for a distributed

software system. Agents have many aspects that are consistent with the object-oriented

paradigm. Agent-based systems can inherit all the benefits from object-oriented

programming methodologies. A common concept for the future of Internet computing

is that of intelligent software entities communicating and coordinating with each other

over wide area networks. Agent-based systems are a good match for this paradigm.

Self-configuration and decentralization are good aspects of using agents to provide fault-

tolerance by replicating a disabled agent [25]. Furthermore, an agent-based system can

have better scalability and modularity and it can be distributed over a large number of

processors.

Although agent based technology shows many good characteristics for developing

a complex distributed software system, it is still in need of maturing its methodologies to

solve many technical hurdles, for example, agent communication infrastructures,

knowledge representation, and interoperability between heterogeneous agents. There is

considerable literature discussing such technical challenges and pitfalls for developing

agent-based systems [15; 19; 36].

 8

2.3 Multiagent System

A multiagent system is a group of agents that pursue some common high-level

system goals. Generally, each agent has limited knowledge about overall problems and

incomplete information to solve them. The entire system control and data are naturally

decentralized and each agent’s computation is asynchronous. To achieve overall system

goals agents can cooperate on their activities, coordinate their knowledge, or compete

with each other to achieve their given tasks. Interaction between agents may take place

directly via an agent communication language (ACL) or indirectly via the system

environment (Agents sense the actions of other agents and react accordingly). The

benefits of a multiagent system are many and in most cases can include flexibility,

scalability, decentralization, and robustness.

Complexity is highly increased in multiagent systems development. Developers

must consider the problems of traditional distributed systems such as potential

communication bottlenecks, weak security, deadlocks, resource sharing, and

synchronizations. In addition, developers must consider additional issues for designing

a multiagent system. Such additional issues include the following:

1) Agent representations: How are agents uniquely identified in a given

environment? An agent’s identity may contain name, IP address, or

available services from the agent.

2) Organization structures (agent society): How does a multiagent system

organize agents to achieve goals?

 9

3) Task planning: How does a multiagent system distribute given tasks to agents

and integrate the results?

4) Interaction protocols: How do agents interact with each other to coordinate

tasks? Since agents may collaborate, compete, or negotiate to achieve given

tasks, various interaction protocols must be considered.

Application domains in which multiagent system technology is appropriate

typically have a naturally distributed system environment (military, banking, etc.) and the

problems are too large and complex to be solved by a single, centralized system. Areas

of application for multiagent systems can be divided into five main categories: problem

solving in the broadest sense, collective robotics, multiagent simulation, the construction

of hypothetical worlds, and kinetic design of programs [18]. Recently, multiagent

systems have been used for education applications such as intelligent tutoring

systems [14]. Numerous multiagent systems have been deployed in both academic and

industrial areas ranging from patient scheduling in a hospital [1] to climate control of a

building [37], and in areas as varied as Information Broadcasting via the Internet [38],

supply chain integration [26], and an architecture for enterprise modeling and integration

[32].

2.4 Agent Platforms

An agent platform is a software environment in which an agent lives. An agent

platform provides a software environment for agents to execute their tasks, to access

system resources, and to guarantee integrity and protection of agents and the platform

 10

itself. An agent platform also provides various services for agents such as agent

management, task distribution/integration, agent naming facility, message

transport/handling mechanisms, and communication protocols.

Examples of agent platforms are DARPA’s CoABS, Carolina, IBM's Aglets,

General Magic's Odyssey, Object Space’s Voyager, Grasshopper from GmbH

Informations und Kommunikationssysteme (IKV++), and Mitsubishi's Concordia.

Although there have been many agent platforms proposed in the software agent research

areas, no generic standard agent platform has been established since the requirements of

agent-based systems are largely varied across different software domains; however, there

are two emerging standards for a generic agent platform in industry: 1) the Object

Management Group's Mobile Agent System Interoperability Facility Specification

(MASIF) and 2) the specifications promulgated by the Foundation for Intelligent Physical

Agents (FIPA).

Eleven companies including 3Com, HP, and Sun organized the Object

Management Group (OMG) in 1989. In 1995, OMG started working on the Mobile

Agent Facility Specification (MAF) to support agent mobility and interoperability. The

standard’s name was changed from MAF to MASIF in 1997. The MASIF standardizes

agent architecture, agent management, agent transfer, agent system types (names), and

location syntax to promote interoperability among heterogeneous agent platforms [30].

FIPA was organized in 1996 to create generic software standards for agent-based

systems. Currently FIPA has over 55 international organizations including British

 11

Telecommunications, IBM, Toshiba, and Whitestein Technologies. FIPA announced

the first specification in 1997 and FIPA 2000 is the latest version. The FIPA

specifications standardize agent communication, agent management, agent/software

integration, and human/agent interaction [11; 13]. The major difference between

FIPA’s specifications and MASIF is that FIPA doesn’t specify agent internal architecture

and agent implementation. Another major difference is the method of agent interactions.

FIPA’s specifications use the Agent Communication Language (FIPA-ACL), but MASIF

uses Remote Procedure Call (RPC).

In this research, a specific agent platform, called agentMom, is selected to

develop the visual execution analysis system. The agentMom platform is developed at

AFIT to provide a simple and basic architecture for building agents and for specifying

communication methods between agents [7]. An overview of how agentMom works is

shown in Figure 1.

Figure 1. agentMom Architecture

 12

In agentMom, agents communicate through a Message Handler. All agent

communications are performed as conversations, which define a sequence of message

exchanges between agents to coordinate their actions. The Message Handler is similar

to a personal mailbox for an agent to receive messages from other agents.

An agent allows itself to coordinate with other agents by starting a Message

Handler that receives messages from other agents. A Message Handler monitors a

network communication port to receive incoming messages from other agents. When

one agent wants to communicate with another agent, it starts one of its conversations as a

separate Java thread. The conversation then establishes a TCP/IP socket connection

with the other agent’s Message Handler and sends the initial message in the conversation.

When the Message Handler receives a message, it passes the message to the agent’s

receiveMessage method that compares the message against its known list of allowable

message types to see if it is the start of a valid conversation. If the conversation is valid,

the agent starts its side of the appropriate conversation, also as a separate Java thread. If

the conversation is not valid, the agent replies with Sorry message to the sender agent.

After two agents establish a valid conversation, all communications between agents are

controlled by the two different conversation threads. During the conversation, agents

can send multiple messages to each other using built in readMessage and sendMessage

methods. While conversations handle the message passing between agents, they still

must have a way to communicate with their parent agents. This is accomplished using

method calls from the conversations back to their parents. The agentMom is platform

independent since it is implemented in Java.

 13

2.5 Agent Communication Language (ACL)

Once agents are deployed in a distributed environment, they need to communicate

to coordinate their actions and exchange information. Without communications, an

agent is merely an isolated computation entity that has limited capability to achieve

overall system goals.

To share knowledge between agents efficiently, a communication language and

an interaction methodology are needed. An ACL plays a key role in agent

communications. An ACL is a set of messages and their descriptions. It includes

semantic and syntactic specifications for communicative acts between agents such as ask,

inform, tell, reply, and so forth. An ACL message contains a set of one or more

message elements. Precisely which elements are needed for effective agent

communication will vary according to the situation; the only element that is required in

all ACL messages is the performative (type of communicative act), although it is

expected that most ACL messages will also contain sender, receiver and content

elements. An example of an ACL message structure is shown in Figure 2.

Figure 2. Example of an ACL Message

 14

In Figure 2, agent1 informs hpl-auction-server to bid good02 with

the price 150. The in-reply-to element denotes earlier action (round04) to which this

message is a reply. The reply-with element denotes an expression (bid04) that will be

used by the responding agent to identify this message. The ontology element describes

a meaning to the symbols in the content expression. The language element denotes the

language in which the content element is expressed.

Although the standard for ACL has yet to emerge, two major ACL standards have

been proposed and exploited in many agent applications: 1) KQML (Knowledge Query

and Manipulation Language) and 2) FIPA-ACL.

KQML is a communication protocol that includes both a message format and a

message handling procedure to support knowledge sharing between agents [10]. KQML

can be used as a language for an application program to interact with an intelligent

system or for sharing knowledge between many intelligent systems in support of

cooperative problem solving. KQML focuses on an extensible set of performatives,

which defines the permissible operations that agents may attempt on each other's

knowledge and goals [22]. Although such an effort for developing a high-level

communication standard is certainly valuable, the KQML has some drawbacks. Cohen

and Levesque [4] discussed some drawbacks. They pointed out some performatives are

ambiguous and incoherent such as achieve, broker and stream-all. They then proposed

minimum set of performatives as fundamental performatives to improve KQML.

 15

Another emerging communication standard is FIPA-ACL. FIPA-ACL is the

agent communication language associated with FIPA's agent architecture. FIPA-ACL

comprises about 20 basic types of communication, using a rigorous semantic

specification [11]. FIPA-ACL focuses on the interoperability between heterogeneous

agents. To improve the interoperability, FIPA-ACL allows agents to utilize different

message transportation methods.

The fundamental difference between FIPA-ACL and KQML is that FIPA-ACL

does not allow an agent to directly manipulate another agent’s internal state. Therefore,

some of KQML’s performatives are not meaningful in FIPA-ACL. Since Cohen and

Levesque’s criticisms, work has been done in connection with KQML that has produced

more precise forms of semantics [23], and the differences between KQML and FIPA-

ACL are diminishing. Both standards have many common aspects in the recent

specifications [11; 23].

2.6 Agent Conversation

An agent conversation is a sequence of ACL message exchanges between agents.

Multiple agents can engage in a conversation to share information, request services, or

negotiate limited resources. Designing agent conversations is important in agent-based

system development to minimize network overload caused by redundancy.

There are number of ways to describe an agent conversation using a finite-state

automaton, Petri nets, or a sequence diagram. shows the finite-state automaton

corresponding to an agent conversation initiated by an agent A.

Figure 3

 16

1 2

start
A: B << ask to do T(1)

3

5

4

B: A << refuse to do T(1)

B: A << agree to do T(1)

B: A << success to do T(1)

Success

Failure

B: A << failed to do T(1)1 2

start
A: B << ask to do T(1)

3

5

4

B: A << refuse to do T(1)

B: A << agree to do T(1)

B: A << success to do T(1)

Success

Failure

B: A << failed to do T(1)

Figure 3. A Finite State Automaton for an Agent Conversation

Initially, the conversation is in state 1. Then agent A starts the conversation by

asking B to perform task T (1). The conversation then passes into state 2 and two

possibilities open up. Agent B may accept agent A’s request or reject it (if for example,

it is not competent to carry out the task T (1)). If agent B rejects the request, the

conversation will pass into state 5 and the conversation is considered as being a failure.

If agent B accepts the request, the conversation will pass into state 3 to wait for the task

result. Depending on agent B’s task result, the conversation will pass into state 4 with

successful completion of task T (1) or state 5 indicating failure.

2.7 Visualization of Agent-Based Systems

Visualization of agent-based systems can be divided into two categories: single

agent visualization and multiagent visualization. Although they are related to each other,

these categories focus on different aspects of the agent-based system. While single

agent visualization mainly focuses on an agent’s internal state and interactions with other

 17

agents, multiagent visualization focuses on external workings of the distributed,

heterogeneous agents in a given environment [31].

Considerable research has focused on the development of agent platforms, agent

internal architectures, and agent communication protocols; however, visualization of

multiagent systems for analysis is largely neglected. One of the few systems that

incorporates some analysis and visualization features is ZEUS [29]. ZEUS is an agent

building toolkit that allows system developers to use visual editing tools to construct the

multiagent systems and to specify the interactions between the agents. The system

developers can monitor concurrent tasks and messages between agents by employing the

visualization tool, called Visualizer. The Visualizer is comprised of Society Viewer,

Reports Tool, Agent Viewer, Control Tool, and Statistic Tool. Society Viewer shows

predefined agents relationships such as peer-to-peer or superior-subordinate. Users are

required to define an agent’s relationship when designing agent organization. Society

Viewer also shows message exchanges between agents. The Reports Tool visualizes

task distribution and the execution state of tasks. The Agent Viewer enables users to

observe an agent’s internal states. The Control Tool is used to remotely review and/or

modify the internal states of individual agents. The Statistic Tool provides various

statistical data about an agent and the system. shows an example of Society

Viewer. In Figure 4, each agent is displayed by graphic icons in a rectangle. Agent

relationships and message exchanges are shown as color-coded arrows between agents.

Figure 4

 18

Figure 4. Example of ZEUS Society Viewer

Schroeder and Noy [31] developed a methodology to visualize agent messaging

for various agent types. They developed a distance metric to describe an agent’s

messaging behavior. They also exploited various distance metrics such as Euclidean,

Hamming distance, and edit distance. shows the agent messaging visualization.

Agents are shown as spheres and the distances between spheres represent the number of

message exchanges. (a) shows equal number of messages sent by three agents

and Figure 5(b) shows equal number of messages sent by two agents and no messages

sent by third agent.

Figure 5

Figure 5

 19

(a) (b)(a) (b)

Figure 5. Visualization of Agent Messaging Behavior

Nowostawski et al used a Colored Petri Net (CPN) to visualize complex agent

conversations [27]. A conversation is modeled as a whole Petri Net composed of a set

of subnets, where at least one role has Start place and is connected to an arbitrary number

of other conversation participants. An example of CPN for Request conversation is

shown in Figure 6.

Figure 6. Colored Petri Net for Request Conversation

 20

Kaminka et al developed the plan-recognition tool, OVERSEER, to monitor a

previously deployed multiagent system [21]. They employed the probabilistic algorithm,

YOYO, to reduce the uncertainty when the tool tracks an agents’ state.

Although not directly discussing agents, some researchers have addressed

visualization for distributed systems. Georgia Tech developed a visualization

environment called PARADE [39] for developing animations and visualizations of

parallel and distributed programs. They also developed Gthreads [40] for visualizing

threads-based parallel programs on a shared memory parallel computer. PARADE and

Gthreads utilize an animation toolkit, POLKA [41] to visualize programs from different

languages and architectures. Pablo Research Group at the University of Illinois

developed performance analysis techniques and a visualization environment for

performance visualization of parallel and distributed systems. They exploit

SvPablo [42] to capture performance related data from the observed system and provide

the data to Virtue [43] for visualizing the system’s dynamic behavior and optimizing the

system’s performance. ParaGraph [44], SPCview [45], and Medea [46] are similar

works for visualizing message passing parallel distributed systems. These tools

visualize inter-processor communications, message passing paths, or message routing

performance against various network topologies.

Although multiagent systems are implemented as multi-threaded, parallel, or

distributed systems, it is difficult to apply distributed system visualization tools for

analyzing multiagent systems since they do not address the knowledge level messaging

infrastructures and task synchronizations typically associated with multiagent

 21

systems [29]. These distributed and parallel visualization tools do, however, provide a

good foundation of knowledge for this research.

2.8 Multiagent System Engineering (MaSE)

In this research, the visualization system is developed using the Multiagent

System Engineering methodology (MaSE). MaSE is the result of ongoing work by a

number of researchers. Deloach developed the major concepts of the MaSE [6] and

Wood implemented the MaSE in agentTool that supports design of multiagent systems

and produces basic source code for further implementations [34]. Lacey extended the

MaSE methodology by creating a formal method to verify the communication protocols

in multiagent systems [24]. Raphael developed a Multi-Agent Markup Language

(MAML) for representing multiagent systems design knowledge [33].

MaSE is an end-to-end methodology for the design and implementation of

multiagent systems. MaSE uses a number of graphical models to define different types

of agents, to specify individual agent behavior, and construct an agent’s interactions with

other agents using conversations. MaSE can be viewed as an extension of object-

oriented paradigm where agents are specialization of objects. The primary focus of

MaSE is to help a developer take an initial set of requirements and analyze, design, and

implement a working multiagent system. The MaSE methodology is independent of a

particular system architecture, programming language, or communication framework [9].

MaSE is comprised of analysis and design phases as shown in Figure 7. The

analysis phase consists of Capturing Goals, Applying Use Cases, and Transforming

 22

Goals to Roles. The design phase consists of Creating Agent Classes, Assembling Agent

Classes, Constructing Conversations, and System Design.

Require-
ments

Use Cases

Goal
Hierarchy

Sequence
Diagrams

Roles Concurrent
Tasks

Agent
Classes Agents

Conver-
sations

Deployment
Diagrams

Analysis Design
Capturing

Goals
Applying Use

Cases
Transforming
Goals to Roles

Creating Agent
Classes

Assembling
Agent Classes

Constructing
Conversations

System
Design

Require-
ments

Use Cases

Goal
Hierarchy

Sequence
Diagrams

Roles Concurrent
Tasks

Agent
Classes Agents

Conver-
sations

Deployment
Diagrams

Analysis Design
Capturing

Goals
Applying Use

Cases
Transforming
Goals to Roles

Creating Agent
Classes

Assembling
Agent Classes

Constructing
Conversations

System
Design

Figure 7. MaSE Analysis and Design Phases [8]

A major strength of MaSE is the ability to track changes throughout the process.

Every object created during the analysis and design processes can be traced forward or

backward through the different steps to their corresponding constructs. For instance, a

goal derived in Capturing Goals step can be traced to a specific role, task, and agent class

in the agent deployment diagram. Likewise, agent classes can be traced back through

tasks and roles back to the system level goals they were designed to satisfy.

agentTool is a software tool to support MaSE using visual diagrams based on

underlying formal semantics. agentTool allows users to describe a multiagent system

graphically, specify the necessary properties, check the design for correctness such as

verification of conversations, and plan the system deployment. To reduce users’ effort

to construct multiagent systems with minimum knowledge of agent related theories,

agentTool supports automatic-code generation for the basic architecture of agents and

 23

conversations based on graphical design documents such as the agent template diagram

(Figure 8) and the conversation state diagram.

An agent template diagram for a package express system is shown in Figure 8.

Agents are shown as rectangles and conversations are shown as arrows between agents.

The system is comprised of five agents and eleven conversations. Roles of each agent

are shown inside the rectangles; for example, Airline Manager agent has two roles,

Regional Manager and Manager.

Figure 8. MaSE Agent Template Diagram for a Package Express System

2.9 Summary

Agent-based systems are an interesting area of research for developing complex

intelligent distributed software systems. However, developing a multiagent system is

difficult since developers need to acquire specialized skills with knowledge about

software agents. In addition, software agent technologies still have many problems to

resolve.

 24

To effectively construct agent-based systems, developers must consider both the

problems of traditional distributed software systems and the problems of designing

complex agent infrastructures for agent interactions, goal achievement strategies, and

agent organizations.

Currently, a number of agent development tools are available for agent-based

system designers to construct agents and conversations. Most tools provide a graphic

user interface to help users specify agent tasks, organizations, and conversations. Zeus,

JAFMAS [5], JATlite, and FIPA-OS [12] are examples of such agent development tools.

Others may be found at the World Wide Web [47]. While such agent development tools

mostly focus on the multiagent systems development environment, visualization for

analyzing and monitoring a multiagent system’s execution has rarely been considered.

This makes it difficult for developers to understand and debug multiagent systems. As

agent-based technologies are becoming widespread, visualizations for analyzing and

troubleshooting multiagent systems are needed.

 25

III. Methodology

3.1 Introduction

As stated in Chapter 1, the goal of this research is to develop a visual program

execution analysis methodology for multiagent systems. The primary focus of the

visual execution analysis is to help developers analyze, validate, and troubleshoot

dynamic multiagent system behavior. In this way, developers can produce a better

system design to get a robust, validated, enhanced performance system. The visual

execution analysis consists of Profiling Run-Time Data, Behavior Analysis, and Semantic

Performance Analysis. Figure 9 depicts the visual execution analysis. Each step is

described in the rest of this chapter.

Profiling Run-Time Data

Behavior Analysis

Semantic Performance
Analysis

Initial
system
design

Visual Execution Analysis

Robust,validated,
enhanced performance
system design

Profiling Run-Time Data

Behavior Analysis

Semantic Performance
Analysis

Initial
system
design

Visual Execution Analysis

Robust,validated,
enhanced performance
system design

 Figure 9. The Visual Execution Analysis

 26

3.2 Profiling Run-Time Data

Profiling run-time data from a multiagent system is the first step of the visual

execution analysis of multiagent systems. In this step, developers define desired data to

analyze the system execution behavior and to create high-level abstract views of the

system. Such data will be collected and presented by the visualization system. As

with any distributed software systems, it is a challenging task to extract such relevant

information since agents perform their tasks asynchronously and dynamically within a

distributed environment.

To accomplish this step, developers must consider the following:

1) Content: What subset of information from a multiagent system is needed to

analyze the system’s execution behavior?

2) Collection Method: How do developers collect the content in an agent

environment?

The content can vary widely over the context of the multiagent systems and the

designer’s perspective. The content of a travel scheduling system can be different from

a factory automation system. An advanced designer and a novice designer may need

different content to understand the execution of multiagent systems.

System execution should be visualized or animated in a fashion similar to the

original high-level design to reduce the effort required by developers to understand the

 27

execution and to identify errors by comparing the actual execution against the expected

behaviors. To accomplish this, finding the appropriate content for generating high-level

abstract views is essential. For multiagent systems, message passing is the major

characteristic of system behavior and performance. In an agent environment, messages

are expressed in an agent communication language and exchanged via a message

transportation protocol. Although messages can be encoded in different agent

communication languages, it is expected that they will contain sender, receiver, and

content elements. Messages can also include performative and ontology elements for

further collaboration. A performative element denotes the type of the communication

activity such as ask, reply, and inform. An ontology element describes the type of the

information that is shared between agents. Such ontology elements in the messages

show various kinds of information flows in the multiagent system.

Consequently, by focusing on the message exchanges along with their contained

information rather than tracing individual agent executions, developers can gain a

comprehensive understanding of the complex and sophisticated system behavior. In

addition, by collecting knowledge and data from the message analysis along with the total

number of messages, total size of messages, and total elapsed time for message

transportation, one can gain considerable insight into system performance.

After the desired content is defined, developers need a method to acquire the

content from multiagent systems. Collecting run-time data from multiagent systems can

be divided into two major categories: 1) perturbation methods and 2) non-perturbation

methods [21]. Perturbation methods include various kinds of intrusion techniques to

 28

collect the desired data from multiagent systems. Having agents report their execution

information or exploiting a remote debugging tool to step through an agent’s execution

are two possible ways of perturbation methods. Obviously, while these intrusion

techniques can provide accurate information about a multiagent system’s behavior, they

may suffer several problems such as additional system overload, undesired impacts on an

agent’s original behavior, and modifications of an agent’s infrastructure and the message

transportation protocol.

Non-perturbation methods try to minimize intrusion by exploiting the system

execution plan-recognition algorithms [21] or agent’s task achievement pattern-

recognition techniques. Using broker (intermediate) agents to intercept messages or

exploiting an algorithm to find out agents’ message exchanges in the network are two

examples of non-perturbation methods. Non-perturbation methods have very little

impact on agent’s original behavior and require little or no modifications on the existing

agent infrastructures. However, non-perturbation methods suffer large uncertainty and

low accuracy for acquiring desired data. For example, examining a large amount of

network packets for searching an agent’s message costs a lot of computation. In

addition, there is no guarantee for finding the desired data. Although non-perturbation

methods are preferred for monitoring multiagent systems, they may not be good for

debugging and performance analysis purposes due to the uncertainty and low accuracy to

get the desired data from large information sources.

Consequently, in this research, a perturbation method is applied to capture the

message exchange data between agents. This is accomplished by exploiting agent

 29

technologies. A special agent, called the InfoGathering agent, is developed for

gathering message exchange data. Data collection is accomplished by requesting a copy

of received messages from the observed agents. Although this approach requires small

modifications on the existing agent infrastructure, it provides exact, well-timed

information for both analyzing system executions and troubleshooting the system

performance. After the data is prepared by InfoGathering agents, another agent, called

the VisAnalysis agent, generates high-level abstract views of the system execution

behavior. Detailed design and implementation of these agents are described in Chapter

4.

3.3 Behavior Analysis

Behavior analysis is the second step of visual execution analysis. After the

agents’ message exchange data is collected by InfoGathering agents and presented by

VisAnalysis agents, developers start analyzing the system execution behavior to discover

defects of the system and check if the system performs given tasks as intended.

Although the behavior analysis of multiagent systems is a challenging task, it is an

important process to validate a system’s functionality and construct a robust, scalable

multiagent system.

Analyzing execution behavior of a multiagent system consisting of many agents is

difficult for a number of reasons. First, the overall system behavior emerges from

complex agent interactions that can lead to unexpected or undesired system behavior.

Second, agents are irregular and dynamic. By their nature, there is no global system

 30

control, data is decentralized, and agents perform their task by their own decisions in an

asynchronous manner. Third, the complexity of the system grows dramatically as the

number of agents increase. Finally, multiagent systems are more prone to errors than

other software systems. Since multiagent systems are distributed and concurrent

software systems, many types of errors can happen during the system execution such as

message loss, deadlocks, and infinite loops. Even worse, the system can appear to be

working while an undetected major problem exists. Limited capability of multiagent

systems development tools makes it difficult to build a robust multiagent system.

Currently available tools, including agentTool, provide partial support for generating a

multiagent system architecture. Constructing multiagent systems mainly depends on the

developer’s experience and skill.

To analyze an agent’s behavior, developers must know how an agent’s behavior is

modeled. In a typical multiagent system, an agent’s behavior is represented by tasks.

An agent’s tasks are usually modeled with a visual diagramming language such as state

transition diagrams to define an agent’s behavior in each state. In each state, an agent

may perform certain computations or communicate with other agents to share knowledge

of the problem to solve.

Effective behavior analysis can be achieved by observing how information flows

in the system, how agents cooperate to produce desired and undesired behaviors, and how

agents influence one another. By tracing message exchanges between agents,

developers can gain a comprehensive understanding of information flow in the system.

Developers can identify undesired agent behaviors by comparing an agent’s behavior

 31

design model along with messages that the agent utilized. Although developers cannot

see each computation process of an individual agent, they can analyze the result of the

computation by examining the content element of messages. A caveat is that focusing

on the individual computation process is inefficient since the overall system behavior

emerges from complex agent interactions.

In MaSE, behavior analysis can be accomplished by analyzing message

exchanges between agents with a task diagram and a role diagram. A task diagram

depicts an agent’s task state transitions and a role diagram displays an agent’s

collaborations with other agents. An example of role diagram is shown in Figure 10 and

an example of a task diagram is shown Figure 11.

Figure 10. a Role Diagram in a Ticket Searching System

In Figure 10, a ticket searching system is described by three roles (Broker,

Customer, and Seller) and three tasks (Find a Best Offer, Find a

Ticket, and Provide a Offer). The system begins with a request for a ticket

from a customer to a broker (Request a Ticket). The broker then asks available

 32

ticket sellers about the ticket price (Request a Offer). After the ticket sellers

propose different prices of the ticket to the broker, the broker find out the best offer and

sends the ticket price to the customer. A customer can ask multiple brokers to find out

the best price of the ticket.

A task diagram for the Find a Ticket task is shown in Figure 11. There are

three types of messages required to complete the Find a Ticket task. The task

starts by sending a request a ticket message to a broker and ends after a customer

sends a deny or confirm message to the broker. In the meantime, a customer

compares different prices of the ticket from various brokers to select the best price offer.

Figure 11. "Find a Ticket" Task Diagram

As shown in Figure 10 and Figure 11, one can easily understand the system

behavior by analyzing message exchanges between agents with role and task diagrams.

For example, users can identify what types of tickets and how many tickets are traded in

the system by analyzing request a ticket messages between Customer agents

 33

and Broker agents. Users can check if the Broker agent performs its task as intended

by analyzing request a ticket and request a offer messages.

3.4 Semantic Performance Analysis

Through the previous two steps, run-time data (especially message exchange data)

of the system are presented and the developer evaluates the system’s behavior and

agents’ collaborations against existing system behavior design models. In the semantic

system performance analysis step, different developers may define different measurement

criteria to evaluate the system’s performance. For example, while data security may be

a good measurement for military intelligence or online banking systems, it may not be

good for a public system where data security is not a critical issue for the system.

Advanced developers and novice developers may have different criteria to evaluate

system performance.

Although there can be many criteria for performance evaluation of multiagent

systems, there is a common factor that affects multiagent systems’ performance: an

agent’s task throughput. Each agent’s task throughput is closely related to the overall

system performance since the overall system goal is accomplished from the collection of

each agent’s task results. There are many factors affecting an agent’s task throughput

including an agent’s run-time environment, system structures (agent society), message

transportation protocol, data models, task planning, the agent’s action selection algorithm,

and resource allocation. It is generally considered that delayed information exchange

 34

(delayed message exchange), complex task planning, and high-computational action

selection algorithms decrease the system’s performance.

After the system performance evaluation criteria are decided, developers begin a

performance evaluation. Developers may then consider modifications of system

configuration, the agents’ organization, and other factors such as system execution

environment to optimize the system performance. To achieve the best performing

multiagent system, running and analyzing the system executions in different

configurations is necessary. Off-line replaying capability can be beneficial to help

developers compare different results of the system’s performance.

3.5 Summary

This chapter describes the visual execution methodology for understanding,

analyzing, troubleshooting multiagent systems. The process began by profiling run-time

data from the observed system. The collected data was then transformed to multiple

visual presentations for helping users analyzing the system behavior and evaluating the

system performance. Consequently, developers can produce a better system design

form the initial design to construct a robust, validated, enhanced performance system.

 35

IV. Design and Implementation

4.1 Introduction

This chapter covers the visualization system architecture and the visualization

process to achieve the visual execution analysis described in Chapter 3. The

visualization system helps developers capture the run-time data from the observed system

and generates multiple views for analyzing the system behavior and performance. The

visualization system architecture consists of two types of agents: (1) InfoGathering

agents and (2) VisAnalysis agents. These agents are developed in Java (jdk 1.3) and

designed to run on any platforms or processors that support the Java Run-time

Environment (JRE). These agents provide a dynamic, selective visualization

environment that is well suited for the visualization process. Section 4.1 discusses the

design considerations for developing a visualization system for multiagent systems

execution analysis. Section 4.2 discusses the use of agents for developing the

visualization system and how InfoGathering agents and VisAnalysis agents are

configured to produce a dynamic interactive visualization environment. Section 4.3

describes how developers create their own visualization sessions with InfoGathering

agents and VisAnalysis agents. This section also presents an example multiagent system

that is used to help understand of the visualization process.

 36

4.2 Design Consideration

Designing a visualization system for multiagent systems execution analysis

requires careful thought. To develop an efficient visualization of multiagent systems

execution behavior, one must take into account both multiagent systems properties and

data visualization characteristics.

Key design considerations are:

- Scalability: A multiagent system may consist of a large number of agents. A

visualization system must deal with many agents to collect their execution

data and present the large amount of data effectively.

- Minimal invasion: A visualization system must try to reduce disturbance of

agent execution to maintain the original system behavior.

- Distributed data collection: Agents are distributed and they may run on

different hardware platforms. A visualization system needs strategies for

gathering desired data from distributed agents run on different processors.

- Accuracy: A visualization system must present correct views of multiagent

systems behavior.

- Efficiency: Maximizing data-ink ratio and reducing chart-junk are important

to utilize the limited display area.

- Adaptability: The visualizations can be adjusted to serve users’ multiple

needs.

 37

- Effectiveness: Minimal effort should be required of users to generate

visualizations.

To meet the above design considerations, this research developed an agent-based

visualization system. The agent-based visualization system exploits agents to collect

distributed data and visualize multiagent systems behavior. Details of this agent-based

visualization system are discussed in the subsequent sections.

4.3 Agent Based Visualization

Card et al identified several steps necessary in information visualization to

transform raw data into the specific views for different types of users [2]. The

visualization steps are shown in Figure 12.

Raw
Data

Data
Tables

Visual
Structures Views

Data
Transformations

Visual
Mappings

View
Transformations

Human Interaction

Raw
Data

Data
Tables

Visual
Structures Views

Data
Transformations

Visual
Mappings

View
Transformations

Human Interaction

Figure 12. Information Visualization Steps

Agent-based visualization follows such steps to produce high-level views of

multiagent systems’ behavior. First, the raw data (message exchanges between agents)

are collected from multiagent systems. This requires gathering the data from the

selected agents and conversations. The gathered data is then transformed into a data

table. The data table stores gathered data into a specific format for easy mapping to the

 38

visual structures. Visual mapping follows the data transformation. In the visual

mapping, the formatted data is converted to visual structures such as glyphs, labels,

figures, and other graphical objects. View transformation generates multiple views by

displaying graphical objects in different layouts such as the Agent Relationship View or

the Conversation Flow View. These views are described in Chapter 5. Developers can

interact with the visualization system to select desired data, create graphical objects, and

generate views.

This research utilizes agent technology to implement this information

visualization process. The agent-based visualization comprises the same steps as

traditional visualization process except it uses agents to perform each step. In the agent-

based visualization, each visualization step is performed as a task in an agent.

shows the agent-based visualization.

Figure 13

Figure 13. Agent-based Visualization

Distributed
Information Gathering

Data
Transformations

Views
(Message View,

Agent Relationship View, etc)

Visual
Mappings

View
Transformations

User
Interaction

Infogathering
Agent

VisAnalysis
Agent

Raw Data
(Conversations, etc)

Data Table
(VisAnalysis DB)

Visual Structures
(VisAgentElement,

VisConvElement, etc)

Distributed
Information Gathering

Data
Transformations

Views
(Message View,

Agent Relationship View, etc)

Visual
Mappings

View
Transformations

User
Interaction

Infogathering
Agent
Infogathering
Agent

VisAnalysis
Agent
VisAnalysis
Agent

Raw Data
(Conversations, etc)

Data Table
(VisAnalysis DB)

Visual Structures
(VisAgentElement,

VisConvElement, etc)

 39

In Figure 13, InfoGathering agents and VisAnalysis agents are created to achieve

the agent-based visualization. Both agents are developed using agentTool. They

perform given tasks and communicate with other agents based on the agentMom

infrastructure. Both agents can be integrated into any type of multiagent system since

they can communicate with agents through agent conversations. To achieve the

visualization process, InfoGathering and VisAnalysis agents are assigned to one or more

tasks. InfoGathering agents perform the distributed information gathering task.

VisAnalysis agents perform the data transformation, visual mapping and view

transformation tasks. Developers interact with both agents to collect data from the

observed systems, specify visual structures, and generate desired views that show key

aspects of the system.

This agent-based visualization architecture provides a number of benefits. First,

it improves the visualization system performance and helps to resolve major problems

that may occur when the visualization system runs on a single machine. Such problems

can include a data collection bottleneck due to gathering data on a single machine, and

limited scalability for visualizing numerous objects in a limited display area. An

example of the agent-based visualization system configuration is shown in Figure 14.

 40

InfoGathering
Agent A

User A

VisAnalysis
Agent A

Agent Group A Agent Group B Agent Group C

User B

InfoGathering
Agent C

InfoGathering
Agent B

VisAnalysis
Agent B

VisAnalysis
Agent C

InfoGathering
Agent A

User AUser A

VisAnalysis
Agent A

Agent Group A Agent Group BAgent Group B Agent Group CAgent Group C

User BUser B

InfoGathering
Agent C

InfoGathering
Agent B

VisAnalysis
Agent B

VisAnalysis
Agent C

Figure 14. An Example of Agent Based Visualization System Configuration

In Figure 14, User A instantiates two VisAnalysis agents and two InfoGathering

agents on different machines to collect data and generate views for analyzing execution

of Agent Group A and B in the system. Since the User A separated data collection task

loads into two InfoGathering agents on different machines, the data collection bottleneck

for gathering message exchange data from many agents is avoided or decreased.

Scalability is improved by assigning each agent group to different VisAnalysis agents for

visualizing agents execution behavior.

As a second benefit of the agent-based architecture, developers can select or

deselect observed agents dynamically at runtime. This is achieved by allowing

developers to send a data-gathering request or cancel message anytime to InfoGathering

agents via VisAnalysis agents. In addition, developers can reduce additional network

overload for gathering data and decrease interference with the multiagent system’s

original behavior by selecting only those necessary agents for analysis.

 41

As a third benefit, agent platform dependence is minimized. Since the data

collection is achieved by asking agents to report the copies of received messages via

agent conversations, the agent-based visualization does not require any specific agent

platforms.

Last, multiple developers can analyze different parts of the same observed system

by using different VisAnalysis agents and InfoGathering agents. Cognition effects can

be maximized by employing familiar glyphs and colors to encode data for visualization.

In Figure 14, the User A analyzes Agent Group A, and B and the User B analyzes Agent

Group B, and C in the system using different VisAnalysis and InfoGathering agents.

4.4 The Visualization Process

The visualization process allows developers to create their own visualization

sessions for analyzing multiagent systems execution. The visualization process consists

of six steps as shown in Figure 15. Developers interact with multiple VisAnalysis agents

and InfoGathering agents via a graphic user interface to complete each step. Each step

is described in more detail in the following paragraphs.

Select
Target Agents

Create Agents’
Visual Structures

Select Target
Conversations

Create Conversations’
Visual StructuresData CollectionData Presentation

Select
Target Agents

Create Agents’
Visual Structures

Select Target
Conversations

Create Conversations’
Visual StructuresData CollectionData Presentation

Figure 15. The Visualization Process

 42

4.4.1 Example Multiagent System

To explain the visualization process and to demonstrate the benefits and usability

of our agent-based visualization system, this research developed a multiagent system for

Command, Control, Communication and Intelligence (C3I) simulation as depicted in

. Figure 16

Figure 16. C3I Simulation System Architecture

The goal of the C3I simulation system is to support a commander’s decision-

making process by integrating various sources of information using distributed agents.

The system is constructed using agentTool. The system consists of six types of agents

and nine types of conversations between agents. In Figure 16, agents are shown as

rectangles and conversations are shown as arrows between agents. SubTroop agents

collect battlefield information and report this information via conversations to a higher

level agent according to the information categories such as Report Personnel Info or

Report Operation Info. Personnel, Operation, Logistics, and Intelligence agents

 43

manage different battlefield data based on the SubTroop agents’ reports. A Simulator

agent presents the latest battle situations to the commander. To update the battle

simulation, a Simulator agent queries new battlefield data via an Update Info

conversation with a Personnel agent. The Personnel agent then starts a series of

conversations (Update Operation Info, Update Intelligence Info, Update Logistics Info,

and Update Simulation) to report the latest battlefield information to the Simulator agent.

This research instantiated a C3I simulation system consisting of ten agents: five

SubTroop agents and one of each type of the remaining agents. SubTroop agents are

named 1st_Div, 2nd_Div, 3rd_Div, 4th_Div, and 5th_Div. The Simulator agent is named

CommandPost and other agents are named after their type such as Personnel, Operation,

Intelligence, and Logistics. All agents are implemented using agentMom and

distributed across different machines on a local area network.

4.4.2 Select Target Agents

Developers start the multiagent system visualization process by initializing one or

more VisAnalysis agents. Based on the total number of agents that the developer wants

to analyze in the observed system, the developer needs to determine how many

VisAnalysis agents are required. Multiple VisAnalysis agents may be required if

developers need to analyze many agents in the observed system. Due to the limited

display area of the Agent Relationship and Conversation Flow views that are produced by

an VisAnalysis agent, the recommended rate is one VisAnalysis agent for 20 to 30

observed agents.

 44

After the VisAnalysis agents are initialized, developers are required to select target

agents and input the target agents’ registry data with the VisAnalysis agents. The

visualization system allows developers to choose target agents dynamically for various

analysis purposes. Developers may need to see different parts of the system depending

on the different analysis situations. A developer may want to observe the overall system

behavior to seek performance bottlenecks, to understand the system execution behavior,

or to find out major actors in the system. Major actors in the system can be the agents

that involve many interactions with other agents, or the agents that have important

resources that should be shared among agents. Another developer, on the other hand,

may want to observe a part of the system to debug errors, or to focus on agents of interest.

The last task in this step is to input the selected agents’ registry data into the

VisAnalysis agents. The agent registry data describes the agent’s name, type, physical

(network) location, and communication port. InfoGathering agents use the agent

registry data to communicate with the target agents for message exchange data collection.

Since the visualization system is independent from specific agent platforms, an

agent directory facilitator or agent management services are not provided to help input

the selected agents’ registry data. Developers interact with the VisAnalysis agents to

manually input the agents’ registry data or automatically load this data from agentTool

system deployment diagram if available.

Figure 17 shows the results of an agent selection process in which a developer

initialized a VisAnalysis agent called C4I_VisAnalysis. The developer then

 45

selected CommandPost, Intelligence, 1st_Div, and Personnel agents (right pane) and input

the Personnel agent’s registry data.

Figure 17. Select Target Agents with a VisAnalysis Agent

Developers can select / deselect agents dynamically using right or left arrow

buttons located in the center between two panes. The selected agents’ registry data will

be transmitted to the selected InfoGathering agents in the Data Collection step for

gathering the target agents’ message exchange data.

4.4.3 Create Agents’ Visual Structures

In this step, developers map the selected agents to graphical attributes for colors,

shapes, lines, and rendering options. The visualization system allows developers to

select colors, shapes, lines and rendering options to differentiate agents in the Agent

Relationship, Strip, and Conversation Flow views. In this way, developers can increase

 46

the cognition effect for recognizing the agents in such views. The visualization system

also enables developers to save the agents’ visual structures into a file to be reloaded at a

later time. This reduces the developers’ efforts to create the agents’ visual structures in

different visualization sessions.

Figure 18

Figure 18. Create Agents Visual Structures

 shows a session in which a developer selected a green, thin lined

triangle with stroke plus fill rendering option for the Intelligence agent. The target

agent is highlighted in the left pane when the developer creates the agent’s visual

structure. Developers can preview the visual structure for an agent using the “Display”

box in the right.

4.4.4 Select Target Conversations / Create Conversations’ Visual Structures

Developers select target conversations and create the selected conversations’

visual structures in this step. Selecting the conversations has similar purposes as

 47

selecting target agents in the previous step. Developers may want to observe all

conversations among agents at the beginning and narrow down to an interesting subset of

the conversations later on. Different developers may want to focus on specific

conversations for other purposes, for example, analyzing the conversations that access

shared variables.

To help developers’ recognize selected conversations in the Agent Relationship,

Strip, and Conversation Flow views, the visualization system allows developers to select

a color and line type to represent the conversations. In , the developer selected

a red, flat line for displaying Update_Info_Simulator_Agent_I conversation

(highlighted in the left pane). Developers can select / deselect conversations

dynamically using the Add Manually or Remove Conv buttons shown in the top

right side of this figure.

Figure 19

Figure 19. Select Target Conversation / Create Visual Structures

 48

4.4.5 Data Collection

After the target agents and conversations are selected and their visual structures

are constructed, developers need one or more InfoGathering agents for acquiring the

message exchange data from the target agents. Developers need to consider how many

InfoGathering agents are required based on the number of target agents. Since

assigning too many agents to an InfoGathering agent may decrease the InfoGathering

agent’s data collection performance, developers may need to distribute the data collection

task loads across multiple InfoGathering agents. In addition, developers may encounter

a performance bottleneck by collecting and presenting too much information on the same

machine. To prevent such bottlenecks, the visualization system allows developers to

separate the data collection and the data presentation processes by running InfoGathering

agents and VisAnalysis agents on different machines.

Figure 20 shows a scenario in which a developer employed three InfoGathering

agents for collecting data, Local_IGAgent, Remote_IGAgent_1, and

Remote_IGAgent_2. Developers can initialize local InfoGathering agents (run on

the local machine) or connect to remote InfoGathering agents (run on different machines)

by using the graphic user interface in the VisAnalysis agent (two boxes in the top of the

InfoGathering Agent tab).

 49

Figure 20. Employ InfoGathering Agents

To begin the data collection process, developers need to assign the target agents to

InfoGathering agents. Target agents are displayed in the left pane and available

InfoGathering agents are shown in the right top pane. In Figure 20, a developer

assigned the Intelligence agent to the Remote_IGAgent_1 to collect message

exchange data from the Intelligence agent. Once an agent is assigned to an

InfoGathering agent, the VisAnalysis agent automatically starts an InfoGathering

Request conversation to ask the InfoGathering agent to collect the incoming messages

to the agent.

Developers can stop the data collection process anytime by releasing target agents

from an InfoGathering agent. Once an agent is released from an InfoGathering agent,

 50

the VisAnalysis agent automatically starts an InfoGathering Cancel Request

conversation to ask the InfoGathering agent to cancel the data collection from the agent.

Assigning and releasing agents can be simply done by mouse clicking on the right

or left arrow button in Figure 20. Developers also can check the assigned agents and

current state of InfoGathering agents. The dialog box in Figure 20 shows the result of a

developer checking the Remote_IGAgent_1’s current state.

 To collect data from the example multiagent system (C3I simulation system),

this research modified the example system’s infrastructure, agentMom, for acquiring

message exchanges between agents. shows the modified agentMom and the

data collection process.

Figure 21

Figure 21. Modified agentMom for data collection

message
handler

agent

conversation

InfoGathering
agent

message
handler

conversation

Make connection &
Send initial message

receive
message

method
calls

VisReport
send & receive copy of

receiving message

receive
message

method
calls

Thread/subobject creation

message
handler

message
handler

agentagent

conversationconversation

InfoGathering
agent

InfoGathering
agent

message
handler

message
handler

conversationconversation

Make connection &
Send initial message

receive
message

method
calls

VisReportVisReport
send & receive copy of

receiving message

receive
message

method
calls

Thread/subobject creation

A new conversation, VisReport, is added to agentMom for sending a copy of

receiving message to InfoGathering agents. The agent class is modified to instantiate

VisReport conversation with InfoGathering agents and to manage the InfoGathering

 51

agent’s registry data. shows the modified agentMom and the data collection

process. Once an agent received data collection request from InfoGathering agents, it

starts sending a copy of receiving message to the InfoGathering agents until

InfoGathering agents send a data collection cancel request to the agent.

Figure 21

4.4.6 Data Presentation

Data presentation in multiple views is the last step of the visualization process.

Once the message exchange data arrives at the VisAnalysis agents from the InfoGathering

agents, the VisAnalysis agents automatically start processing the data to map the data into

the Agent Relationship, Conversation Flow, Strip, and Statistics views. VisAnalysis

agents use predefined visual structures of selected target agents and conversations for

presenting message exchange data in such views. Developers begin a visual execution

analysis session of the system by interacting with the multiple views that are linked by

message exchange data. The details of visual execution analysis using the multiple

views are described in Chapter 5.

4.5 Summary

This chapter describes the agent-based visualization system that supports the

visual execution analysis methodology. The visualization system is comprised of

InfoGathering agents and VisAnalysis agents. The visualization system enables users to

configure the visualization system dynamically for improving the visualization

performance. Developers interact InfoGathering agents and VisAnalysis agents to

 52

collect data from the observed system, specify visual structures of agents and

conversations, and observe the multiple views.

 53

V. Visual Execution Analysis

5.1 Introduction

This chapter describes how developers apply visual execution analysis for

analyzing multiagent systems. Section 5.2 discusses the requirements of multiagent

system execution analysis. Section 5.3 describes how developers exploit the multiple

views to analyze the observed system’s behavior and evaluate the system performance.

5.2 Requirements

This research derives the requirements of visual execution analysis from the

characteristics of multiagent systems [28; 19; 20]. First, agents are distributed and they

may be mobile. Developers need to know where agents are physically located since

their hardware platform can affect the agent’s execution. Second, agents are

communicative. Keeping the history of agent communications is important for

analyzing multiagent systems. In addition, developers often need to see a large number

of message exchanges simultaneously for tracing the system’s evolution. Third, agents

work together for a common purpose and they organize dynamic relationships depending

on the given problems and tasks. Analyzing the dynamic organizational structures of

different problem solving situations is often beneficial for optimizing the system’s

performance and evaluating the agents’ role assignment. Fourth, the multiagent

system’s performance varies as the system’s configuration changes. Developers need to

compare the system performance with different configurations to search for an optimal

 54

system configuration. Providing statistical data and offline replay capability can

significantly reduce a developer’s effort for comparing different system performance.

Last, multiagent systems can be more easily understood and analyzed when they are

viewed at a high level. However, sometimes developers need to focus on the detailed

level of analysis such as inspecting the source code, tracing an agent’s execution line by

line, or monitoring many variables in the system. Therefore, a visual execution analysis

tool needs to show a multiagent system with various levels of abstraction.

To summarize, visual execution analysis of multiagent systems requires:

- Visualizing agents physical locations

- Keeping the history of agents communications

- Visualizing a large number of message exchanges simultaneously

- Showing dynamic agent relationships

- Providing statistic data and offline replaying

- Describing multiagent systems with multiple levels of abstraction

To achieve efficient multiagent systems execution analysis, these requirements must be

satisfied.

 55

5.3 System Analysis Using Multiple Views

In this research, the visualization system collects and displays multiagent system

execution data at various levels of abstraction. The visualization system provides

multiple views based on the collected messages from multiagent systems.

- The Agent Relationship View displays acquaintance relationships

between selected agents and animates message exchanges between

agents.

- The Conversation Flow View depicts the sequencing of messages

between specified agents during a certain period of system execution.

- The Strip View presents the history of agent communications

according to a certain order selected by the developer.

- The Message View shows the details of a selected message.

- The Content View shows the details of an object passed within a

message.

- The Statistic View shows various statistical summaries of system

performance results.

Since different views have individual advantages, they may be applied for different

purposes in evaluation tasks. Developers can interact with these views to configure the

visualization, to obtain detailed information, or to arrange the information more

conveniently.

 56

To demonstrate the benefits and usability of the visualization techniques, this

research used message exchange data from the C3I simulation system described in

section 4.3.1. The system was instantiated with ten agents that are distributed across

different machines on a local area network. Then one VisAnalysis agent and two

InfoGathering agents were initialized to analyze the system executions. After only a

few minutes, hundreds of messages were generated among agents and collected by the

InfoGathering agents. The VisAnalysis agent then created multiple views using the

message exchange data.

5.3.1 Agent Relationship View

The Agent Relationship View is the main view for understanding, evaluating, and

analyzing multiagent systems. This view satisfies the following visual execution

analysis requirements: (1) visualizing an agent’s physical locations, (2) describing

system structures with multiple levels of abstraction, and (3) showing dynamic agent

relationships.

The Agent Relationship View displays agents and their message exchanges

simultaneously. By displaying conversations between agents, the Agent Relationship

View correlates the system execution with the system design. displays seven

agents and their relationships. Individual agents are identified by icons with different

shapes and colors that are selected by the developer. Agents are labeled with the agent

name, the communication port, and the system identifier. Message exchanges are

displayed by the gray lines between agents with the thickness of the line (along with a

Figure 22

 57

label) depicting the total number of messages exchanged between two agents. In

, the example view resembles the system architecture design shown in Figure 16. The

visualization system automatically connects the appropriate agent icons and

conversations. Developers can then move agents and choose display options in the

Agent Relationship view to enhance understanding of the system structure and the system

executions. This enables developers to recognize the system structure without

knowledge of the design documents. If developers already know the system structure,

they can validate the system design by comparing the Agent Relationship View with the

system structure in the design documents. Developers also can discover undesired agent

interactions by comparing the Agent Relationship View with the system design. For

example, it is an undesired agent interaction if Operation agent exchanges messages with

Logistics agent since there is no conversation between these agents in the system design

document shown in Figure 16.

Figure

22

Figure 22. Agent Relationship View of C3I System

 58

The Agent Relationship View provides a variety of other information. The view

enables developers to identify potential bottlenecks of the system. In ,

developers can recognize that the Intelligence agent is sending and receiving many more

messages than other agents. Intelligence agent’s performance may be decreased by too

many message transactions.

Figure 22

Developers can identify task synchronization and coordination between agents by

monitoring conversations between agents. For example, the sequence of messages

“request to do task2” “accept t2” “notification of end t2” between agents shows

that a task t2 is coordinated and completed between the agents. In addition, developers

can inspect the progress or results of the task by checking the detail of the messages.

The Message View is developed for enabling developers to check the sequence of

messages and the details of a message. The Message View shows a list of all the

messages that are exchanged between two agents. Figure 23 shows a message list

between 1st_Div and Intelligence agents. When developers select a message in the list,

the details are shown in “Message Info” box. In Figure 23, the message is sent from

1st_Div agent to Intelligence agent for reporting intelligence information. The message

sending time, receiving time, and host information (address and port number) are also

shown in this figure. If the message contains object content, further drill down reveals

the object structure as shown in Figure 24.

 59

Figure 23. Message View listing all messages between 1st_Div and Intelligence

Figure 24. Content View depicting details of the object in the message

The Agent Relationship View shows conversations using a label on the message

line or a color-coded line that is selectable by the developer. In Figure 25, two

conversations are labeled and other conversations are color-coded. 1st_Div is in the

Report Intelligence Info conversation with Intelligence agent to report

intelligence data. To examine the messages in the conversation, developers bring up the

Message View by clicking on the message line.

 60

Developers can filter messages by setting the acquaintance variable in the Agent

Relationship View. Filtering is beneficial when developers analyze large amounts of

message exchange data. In Figure 25, a developer resets the acquaintance variable

equal to 20 for checking the message lines that involve more than 20 messages.

Resetting the acquaintance variable also changes the message line thickness. Six

message lines out of thirteen are displayed by the new acquaintance variable. In this

way, developers can easily find the links with large communication traffic in the system.

Developers also can recognize the major actors that have many message exchanges with

other agents.

Figure 25. Agent Relationship View displaying various kinds of information

As a message is sent, an animated line is drawn from the sending agent to the

receiving agent, providing a mechanism for following information or control flow

through the entire system.

 61

5.3.2 Conversation Flow View

Although the Agent Relationship View is useful for comprehending the overall

structure and the information flows in a multiagent system, it is often desirable to focus

on the timing and sequencing of message exchanges during a specific period of system

execution. The Conversation Flow View was created to facilitate identification of

sequential dependencies between messages, long delays for any given message, and

overall timing patterns among messages. The Conversation Flow View also meets one

of the visual execution requirements: Visualizing a large number of message exchanges

simultaneously.

When developers generate the Conversation Flow View, they can select agents

and conversations for filtering out unnecessary information and clarifying the view. To

help developers with selection, the Conversation Flow View Dialog (Figure 26) provides

information about the currently available agents, conversations, and time frame.

Figure 26. Conversation Flow View Dialog

 62

Using the Conversation Flow View Dialog, developers can generate multiple

Conversation Flow Views with different selections of agents, conversations, and time

frames.

The Conversation Flow View (Figure 27) consists of two panes, the overview

pane (top pane) and the detail view pane (bottom pane). In both panes, agents are

represented by color-coded horizontal lines and a message is depicted as a line starting at

the send time on the sending agent line and ending at the receive time on the receiving

agent line. An S at the end of the message line indicates the sending agent and a small

colored rectangle at the other end of the message line indicates the receiving agent of the

message. Time slots are shown with different time labels and vertical lines above the

agent lines. When the mouse is moved over a message, that message is highlighted and

a text bubble is displayed summarizing the message. Mouse clicking on the message

brings up the Message View for displaying the details of the message.

Figure 27. Conversation Flow View displaying 1220 messages

 63

In Figure 27, messages are represented by nearly vertical lines since all agents are

hosted within a local area network and message delay times are very short. Lengthy

delays between sending and receiving a message would result in diagonal lines. This is

useful for identifying delayed information in the system and for debugging and

optimizing performance since the delayed information complicates agent behavior and

lowers performance of the whole system

In a typical system with hundreds of thousands of messages, it can be difficult to

identify individual messages when displayed all at once as shown in the overview pane of

. For this reason, the view provides an interactive zooming capability that

enables more expanded plotting of areas of interest in the detailed view pane.

Developers can move the selection window in the overview pane and change its size to

observe an appropriate level of detail.

Figure 27

The Conversation Flow View also provides agent interaction pattern information.

In Figure 27, a repetitive communication pattern is shown in the detailed view pane

(enlarged in the right side of the view). Using the zooming capability, the developer can

check the sequence of messages between agents and the content of the messages. The

sequence of messages is Update Info, Update Operation Info, Update

Intelligence Info, Update Logistics Info, and Update Simulation. This sequence of

messages matches the agent communication design as shown in Figure 16. Developers

can utilize this information to evaluate the correctness of the system execution behavior

as compared to the system design.

 64

5.3.3 Strip View

The Strip View tracks the history of agent communications. The Strip View

depicts all messages in the order of sender, receiver, sending time, receiving time, or

conversation name. In the Strip View, messages are color coded by sending agent,

conversation name, and receiving agent. shows a Strip View with messages

sorted by the sender. For each sender, messages are further sorted by sending time.

When the mouse is moved over a message, that message is highlighted and a text bubble

is displayed summarizing the message. Developers can drill down to view the details by

clicking on the message in a manner similar to the Agent Relationship and Conversation

Flow views.

Figure 28

Figure 28. Strip View displaying messages sorted by Sender

5.3.4 Statistics View

A variety of Statistics Views provides statistical analysis from a multiagent

system execution. These views present summary information (left side of Figure 29)

about the system such as the total number of messages among selected agents and the

longest, shortest, and average message delay. A series of charts (right side of Figure 29)

also depicts the distribution of messages, tasks, agents, and conversations in the system.

Since agents are autonomous objects and they may show different behaviors on every

 65

system run, such information is useful for comparing system behavior between execution

runs and for identifying messages, agents, and tasks that are frequently executed.

Figure 29. Statistic View presenting message delay summary (left) and

message usage summary (right)

Developers also can utilize statistical information to optimize system performance.

In the example shown, the most frequently executed task was acknowledge (44.3 %).

Therefore, optimizing the acknowledge task can be the possible solution to increase

the system’s performance.

5.3.5 Visualizing the Errors

With larger numbers of agents in multiagent systems, the probability of an agent

or communications failure increases. Since these agents may be separated

geographically, it may be difficult to determine when a failure occurs. The Agent

Relation and the Strip Views deal with this problem by tracking when a message fails to

reach its destination. When this occurs, the message sending and receiving agents are

marked with a large X until they correctly receive or send another message in the Agent

Relationship View (top of Figure 30). The Strip View presents error messages in the

 66

same manner as the Agent Relationship View except it uses a large E to mark errors

(bottom of Figure 30).

Figure 30. Agent Relation and Strip Views displaying Errors

If an agent has failed, it cannot send or receive any messages so the X remains.

The large X and E immediately draw one’s attention to the error. This is important

since errors are likely to have a dramatic impact on system behavior and performance.

In addition to errors caused by system failures, an agent may receive a wrong

message that was sent out of order or incorrectly defined by the sender. If the receiving

agent recognizes a message as an error, it may respond with a message describing the

error. Such error messages are also identified by the visualization tools and annotated

with a large X.

 67

5.3.6 Replaying System Execution Behavior

It is very hard to generate the same program execution behavior repeatedly from

multiagent systems since agents perform their tasks asynchronously. For this reason,

the visualization system records all information during system execution and developers

can save the information to a file for replaying the visualization session. By replaying

different scenarios, developers can analyze performance across different program

execution environments. If a problem is overlooked during initial visual monitoring,

replaying capability enables the analyst to replicate the problem during later analysis.

The Message Loader (top of Figure 31) enables the analyst to trace message exchange

data in a forward or backward direction.

Figure 31. Replaying System Execution with Strip View

5.4 Summary

This chapter demonstrates how developers apply visual execution analysis for

multiagent systems. The requirements of multiagent system execution analysis are

derived according to multiagent systems’ characteristics. Multiple views are generated

from VisAnalysis agents to satisfy the requirements and to present various aspects of the

 68

system’s execution and performance. The Message Loader provides record and

playback capability for non-real-time analysis to compare different system execution

results.

 69

VI. Results

6.1 Introduction

The previous chapters of this thesis demonstrate how the application of visual

execution analysis helps developers understand, analyze, and troubleshoot multiagent

systems. This chapter compares this research effort with previous works, summarizes

this research, and suggests areas of future work that will enhance and extend this research.

6.2 Analysis

As discussed in Chapter 2, a limited amount of work has addressed the

visualization of multiagent systems. This research differs from the above works by

providing an advanced generic program execution analysis methodology for any type of

multiagent system.

For data collection, previous works focused on the message exchanges between

agents; however, the visualizations are tightly integrated with system implementation or a

specific agent platform. These aspects can be a major limitation for adapting these

visualizations to other types of multiagent systems built on different agent platforms.

This research provides a more flexible and adaptable data collection methodology since

InfoGathering agents can be integrated into any multiagent infrastructure in which the

observed system is running to capture communications between any agents in the

observed system. Data collection is achieved by using duplicate messages without

changing the sequence of messages. Unlike existing approaches, this research separates

 70

data collection and data presentation processes by using InfoGathering and VisAnalysis

agents. Scalability and reliability are enhanced since multiple InfoGathering and

VisAnalysis agents can be instantiated and distributed throughout the system to avoid

platforms or network links that might cause bottlenecks.

For data presentation, this research provides unique, detailed, and dynamically

configurable views for analyzing multiagent systems behavior. Schroeder and Noy’s

Agent Messaging View and ZEUS’s Society View provide a high-level viewpoint of

agent relationships similar to the Agent Relationship View in this research. However,

neither of these works captures the timing and sequencing of the various types of

messages and the dynamic relationships between agents. These works only visualize

certain message types and predefined agent relationships. This research, on the other

hand, can handle any types of messages and it shows an agent’s relationships by message

exchanges. In addition, one can recognize information flows in the system by animating

the sequence of the messages in the Agent Relation View. Task dependency between

agents and delayed information in the system can be recognized in the Conversation Flow

View that captures both timing and sequencing of messages. The Strip View displays

the entire history of the agent communications with different sorting orders. Drill-down

and filtering capabilities in this various views enable one to easily navigate the system’s

behavior for further inspection. Such features do not appear in previous works.

Critical events such as communication error or undesired behavior are highlighted in the

Agent Relationship and Strip views to focus one’s attention and provide detailed

information about the events.

 71

Similar to this research, ZEUS supports the statistical analysis of system

execution and offline replaying capability; however ZEUS requires more effort to

regenerate visualizations since it does not support preserving both visual structures of

agents and message exchange data. This research makes it easier to revisit different

visualization sessions by saving visual structures and message exchange data

simultaneously.

ZEUS provides the Reporting Tool to trace the progress of an agent’s current

tasks. This research does not provide such a feature since it requires additional

messages for reporting the task states and brings more interference to the observed

agent’s original behavior. However, such a tool seems to be necessary when the

developer wants to analyze each agent’s internal states. This view may be considered as

a future addition to this research.

6.3 Summary

This research addresses execution analysis, a critical need in the development of

multiagent systems. Program execution analysis is important to improve initial system

design by monitoring, analyzing, and troubleshooting the complex multiagent system’s

behavior. This research has described and implemented a visual execution analysis

methodology for multiagent systems. The visualization system is extensible to any type

of agent-based systems with only a small modification to the agent conversation

infrastructure in the observed system.

 72

Using the visual presentations, developers are able to observe thousands of

messages simultaneously in multiple views showing various aspects of the system’s

behavior. These views provide the overview of the system, relationships among

displayed agents, dependencies among agents, and the history of agent communications.

Beginning with a high-level summary of the message exchange data, an analyst can

progressively focus on smaller subsets of the data to be displayed in more detail by

graphical techniques such as zooming or drilling down to the individual data of interest.

The timing and sequencing of the messages are captured to identify the information flow

in the system and to optimize the system performance. Critical errors are highlighted

for debugging. Separation of data collection and data presentation processes provides

better performance and a dynamically configurable visualization system.

Initial observations indicate that these capabilities significantly improve one’s

ability to analyze and evaluate multiagent systems. To conclusively validate the

benefits of these visual presentations, however, requires additional experimentation with

additional developers and different multiagent systems.

6.4 Future Work

Although the information gathering and visual analysis specification in this

research requires little or no modification to the multiagent system implementation, it

does require modifications to the agent messaging infrastructure to send duplicate

messages. It is likely that these modifications and duplicate messages can be eliminated

by exploiting the capabilities of the Java virtual machine or underlying network protocols.

 73

To this point, this research has focused primarily on the communications between

agents. For a comprehensive analysis and troubleshooting solution, it is necessary to

monitor individual agent execution. Java debugging capabilities should facilitate this

enhancement.

This research to this point has focused on exploring different visual techniques for

multiagent system monitoring. Empirical and experimental user studies are needed to

improve and validate the visualization techniques.

 74

Bibliography

1 Aknine S. and H. Aknine. “Contribution of a Multi-agent Cooperation Model in a
Hospital Environment,” Proceedings of the Third Annual Conference on Autonomous Agents.
406-407. Seattle, WA, May 1-5, 1999.

2 Card, Stuart K. and others. Readings in information visualization : using vision to think.
San Francisco: Morgan Kaufmann Publishers Inc, 1999.

3 DARPA. Control of Agent-Based Systems. http://coabs.globalinfotek.com/. 2002.

4 Cohen, P.R. and H.J. Levesque. “Communicative Actions for Artificial Intelligence’.
First International Conference on Multi-Agent Systems (ICMAS’95). San Francisco, V.Lesser
(Ed.), MIT Press.

5 Deepika Chauhan. JAFMAS: A Java-based Agent Framework for Multiagent Systems
Development and Implementation. PhD thesis, ECECS Department, University of Cincinnati,
1997.

6 DeLoach, Scott A. “Multiagent Systems Engineering: A Methodology and Language
for Designing Agent Systems,” Agent-Oriented Information Systems '99 (AOIS'99). Seattle WA, 1
May 1998.

7 DeLoach, Scott A. Class handout, CSCE 623, AI System Design. Graduate School of
Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB OH, July
2000.

8 DeLoach, Scott A. “Analysis and Design using MaSE and agentTool,” 12th Midwest
Artificial Intelligence and Cognitive Science Conference (MAICS 2001). Miami University,
Oxford, Ohio, March 31 – April 1, 2001.

9 DeLoach, Scott A. and Mark Wood. “Developing Multiagent Systems with agentTool,”
The Seventh International Workshop on Agent Theories, Architectures, and Languages (ATAL-
2000). Boston, MA, July 2000.

10 Finin, T., Y. Labrou and J. Mayfield. KQML as an Agent Communication Language. In:
Software Agents, J.M. Bradshaw (Ed.), Menlo Park, Calif., AAAI Press, 1997, pages 291-316.

11 FIPA. “Part 2: Agent Communication Language.” FIPA 97 Specification, Foundation for
Intelligent Physical Agents, Geneva, Switzerland, November 28, 1997.

12 FIPA. FIPA-OS, http://www.nortelnetworks.com/products/announcements/fipa/. 1999.

13 FIPA. FIPA 2000, http://www.fipa.org/repository/fipa2000.html. 2000.

14 Hamburger, H., and G. Tecuci. “Toward a unification of human computer learning and
tutoring,” Conference on Intelligence Tutoring System (ITS'98). B. P. Goettl, H. M. Halff, C. L.
Redfield, and V. J. Shute, Eds. Springer, 1998.

 75

http://www.nortelnetworks.com/products/announcements/fipa
http://www.fipa.org/repository/fipa2000.html

15 Huhns, M.N. and M.P. Singh. Agents and Multi-agent Systems: Themes, Approaches,
and Challenges. In: Readings in Agents, Huhns, M.N. and Singh, M.P. (Eds.), San Francisco,
Calif., Morgan Kaufmann Publishers, 1998, pages 1-23.

16 Timothy M. Jacobs. “Visualization of Collaborative Software Systems.” Research
proposal of Air Force Institute of Technology, Wright-Patterson AFB OH, September 2000.

17 Timothy M. Jacobs. and Sean Butler. “Collaborative visualization for military planning.”
In Java/Jini Technologies, Sudipto Ghosh, Editor, Proceedings of SPIE Vol. 4521, 42-51 (2001).

18 Jacques Ferber. Multi-Agent Systems. New York:Addison-Wesley, 1999.

19 Jennings, N.R. and M. Wooldridge. “Applying agent technology”, Applied Artificial
Intelligence, Vol. 9(4), pp.351 – 361, 1995.

20 Jennings, N.R., K. Sycara and M. Wooldridge. “A Roadmap of Agent Research and
Development,” In: Autonomous Agents and Multi-Agent Systems Journal, N.R. Jennings, K.
Sycara and M. Georgeff (Eds.), Kluwer Academic Publishers, Boston, 1998, Volume 1, Issue 1,
pages 7-38.

21 Kaminka Gal A., David V. Pynadath and Milind Tambe. “Monitoring Deployed Agent
Teams,” Proceedings of the fifth international conference on Autonomous agents. 308-315.
Montreal, Quebec, Canada, May 28 - June 1, 2001.

22 Finin Tim, Richard Fritzson, Don McKay and Robin McEntire. “KQML as an agent
communication language,” Proceedings of the third international conference on Information and
knowledge management. 456-463. Gaithersburg, MD USA, November 29 – December 2, 1994.

23 A Proposal for a new KQML Specification, Yannis Labrou and Tim Finin, TR CS-97-03,
Computer Science and Electrical Engineering Department, University of Maryland Baltimore
County, Baltimore, MD 21250. February 1997.

24 Timothy H. Lacey. A Formal Methodology and Technique for Verifying Communization
Protocols in a Multi-agent Environment. MS thesis, AFIT/GCS/ENG/00M-12. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

25 Marin O., P. Sens, J-P. Briot, and Z. Guessoum. “Towards Adapative Fault Tolerance for
Distributed Multi-Agent Systems,” Proceedings of ERSADS’2001. Bertinoro, Italy, May 14-18,
2001.

26 Nissen M. E. and A. Mehra. “Some Intelligent Software Supply Chain Agents,”
Proceedings of the Third Annual Conference on Autonomous Agents. 374-375. Seattle, WA, May
1-5, 1999.

27 Nowostawske Mariusz, Martin Purvis, and Stephen Cranefield. “Modelling and
Visualizing Agent Conversations,” Proceedings of the fifth international conference on
Autonomous Agents. 374-375. Montreal, Quebec, Canada May 28-June 1, 2001.

 76

28 Nwana Hyacinth. “Software agents: an overview”, in Knowledge Engineering Review,
vol. 2 N. 3, pp.205-244, October/November 1996..

29 Nwana Hyacinth, Divine Ndumu, and Lyndon Lee. “ZEUS: An advanced tool-kit for
engineering distributed multi-agent systems”, Proceedings of the Third International Conference
on the Practical Applications of Intelligent Agents and Multi-agent Technology. PAAM98,
London, UK, 1998.

30 OMG MASIF, formal/2000-01-02,
http://www.omg.org/technology/documents/formal/mobile_agent_facility.htm. 2000.

31 Schroeder Michael and Penny Noy. “Multi-Agent Visualization Based on Multivariate
Data,” Proceedings of the fifth international conference on Autonomous agents, 85-91. ACM
Press, New York, NY, USA, 2001.

32 Peng, Y., T. Finin, Y. Labrou, B. Chu, Long, J., W.J. Tolone and A. Boughannam. “A
Multi-Agent System for Enterprise Integration,” Proceedings of the Third International
Conference and Exhibition on the Practical Application of Intelligent Agents and Multi-Agent
Technology, H.S. Nwana and D.T. Ndumu (Eds.), London, UK, March, 1998, pages 155-169.

33 Rapahel Marc J. Knowledge base Support for Design and Synthesis of Multi-Agent
Systems. MS thesis, AFIT/GCS/ENG/00M-21. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 2000.

34 Wood Mark F. Multiagent Systems Engineering: A Methodology for Analysis and Design
of Multiagent Systems. MS thesis, AFIT/GCS/ENG/00M-26. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

35 Wooldridge Michael and Nicholas R. Jennings. "Agent Theories, Architectures and
Languages: A Survey" in Wooldridge and Jennings Eds., Intelligent Agents, Berlin:Springer-
Verlag, 1-22, 1994

36 Wooldridge Michael and Nicholas R. Jennings. “Pitfalls of Agent-Oriented
Development”, Proceedings of the second international conference on Autonomous agents. 385-
391. Minneapolis, MN USA, May 10 - 13, 1998.

37 Ygge F. and H. Akkermans. “Making a Case for Multi-Agent Systems”, Multi-Agent
Rationality: 8th European Workshop on Modeling Autonomous Agents in a Multi-Agent World
(MAAMAW ’97), Ronneby, Sweden, May 13-16, 1997, Eds. M. Boman and W. Van de Velde,
Springerman 1997.

38 David Esther, Sarit Kraus. “Agents for Information Broadcasting,” Agent Theories,
Architectures, and Languages (ATAL-1999) 91-105, Orlando, Florida, USA 1999.

39 Stasko John T. The PARADE Environment for Visualizing Parallel Program Executions:
A Progress Report. Graphics, Visualization, and Usability Center, Georgia Institute of Technology,
Atlanta, GA, Technical Report GIT-GVU-95-03, January 1995.

 77

http://www.omg.org/technology/documents/formal/mobile_agent_facility.htm

40 Zhao, Qiang A. and John T. Stasko. Visualizing the Execution of Threads-based
Programs. Graphics, Visualization, and Usability Center, Georgia Institute of Technology, Atlanta,
GA, Technical Report GIT-GVU-95-01, January 1995.

41 Lawrence W. Andrea, Albert N. Badre, John T. Stasko. “Empirically Evaluating the Use
of Animations to Teach Algorithms,” Proceedings of the 1994 IEEE Symposium on Visual
Languages, St. Louis, MO, 1994.

42 DeRose L., Y. Zhang, and D. Reed. SvPablo: A Multi-Language Performance Analysis
System, Computer Performance Evaluation Modeling Techniques and Tools, 352-355. Springer-
Verlag, R. Puigjaner, N. Savino, and B. Sera (Eds), September 1998.

43 Shaffer Eric, Shannon Whitmore, Benjamin Schaeffer, and Daniel A. Reed. “Virtue:
Immersive Performance Visualization of Parallel and Distributed Applications,” IEEE Computer,
44-51, December 1999.

44 Heath M. T. and J. A. Etheridge. “Visualizing the Performance of Parallel Programs,”
IEEE Software, 29-39, September 1991.

45 Wu Xingfu and Wei Li. “Visualizing the Network Activity among Node Processors,”
Proceedings of International Symposium on Transmission & Switching New Technology
(ISTST’96), China, September 1996.

46 DeRose L., M. Pantano, R.A. Aydt, E. Shaffer, B. Schaeffer, S. Whitmore, and D. A.
Reed. “An Approach to Immersive Performance Visualization of Parallel and Wide-Area
Distributed Applications,” Proceedings of the Eight IEEE International Symposium on High-
Performance Distributed Computing, 247-254, August 1999.

47 Vidal José M. “Multiagent Systems.” n.pag. http://www.multiagent.com. December
1998.

 78

http://www.multiagent.com/

Vita

Captain Chong Kyung Kil was born in August 1971 in Seoul, Korea. He

graduated from Kyung-Hee High School, Seoul in February 1990. He entered the

Korea Military Academy in March 1990. In March 1994, he completed his

undergraduate studies with a Bachelor of Science degree in Computer Science and he

was commissioned in the Republic of Korea Army as a communications officer.

Captain Kil’s first assignment was at the the 26th Mechanized Division as a

communication platoon leader in June 1994. In December 1995, he changed his

specialty as a computer officer and he was assigned as a systems analysis officer to the 5th

Infantry Division. In August 1997, he was assigned as a program officer to the 3rd

Army Headquarters. In July 2000, he entered the Graduate School of Engineering’s

Computer Systems Engineering program, Air Force Institute of Technology, Wright

Patterson Air Force Base, Ohio. Upon graduation, he will be assigned to the Army

Headquarters as a program officer.

 79

 REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

Aug 2002
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 VISUAL EXECUTION ANALYSIS FOR MULTIAGENT SYSTEMS

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

 Chong Kyung Kil, Captain, ROKA

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/02-12

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Office of Scientific Research
 Robert L. Herklotz, Ph.D.
 Program Manager: Software and Systems
 801 N. Randolph St., Room 732 (703) 696-6565
 Arlington, VA 22203-1977 e-mail:
robert.herklotz@afosr.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 Multiagent systems have become increasingly important in developing complex software systems. Multiagent systems introduce collective
intelligence and provide benefits such as flexibility, scalability, decentralization, and increased reliability. A software agent is a high-level software
abstraction that is capable of performing given tasks in an environment without human intervention.
 Although multiagent systems provide a convenient and powerful way to organize complex software systems, developing such system is very
complicated. To help manage this complexity this research develops a methodology and technique for analyzing, monitoring and troubleshooting
multiagent systems execution. This is accomplished by visualizing a multiagent system at multiple levels of abstraction to capture the relationships
and dependencies among the agents.

15. SUBJECT TERMS
 Software Visualization, Multiagent Systems, Execution Analysis, Agent-based Visualization, Messages, Agent Conversations,
 Inter-agent Relationships, agentTool, agentMom

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Timothy M. Jacobs, Lt Col, USAF

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

91
19b. TELEPHONE NUMBER (Include area code)
 (937)-255-6565 ext 4279, timothy.jacobs@afit.af.mil

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	ACKNOWLEDGMENTS
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Background
	Problem Statement
	Approach
	Thesis Overview

	Background
	Overview
	Agents
	Multiagent System
	Agent Platforms
	Agent Communication Language (ACL)
	Agent Conversation
	Visualization of Agent-Based Systems
	Multiagent System Engineering (MaSE)
	Summary

	Methodology
	Introduction
	Profiling Run-Time Data
	Behavior Analysis
	Semantic Performance Analysis
	Summary

	Design and Implementation
	Introduction
	Design Consideration
	Agent Based Visualization
	The Visualization Process
	Example Multiagent System
	Select Target Agents
	Create Agents’ Visual Structures
	Select Target Conversations / Create Conversation
	Data Collection
	Data Presentation

	Summary

	Visual Execution Analysis
	Introduction
	Requirements
	System Analysis Using Multiple Views
	Agent Relationship View
	Conversation Flow View
	Strip View
	Statistics View
	Visualizing the Errors
	Replaying System Execution Behavior

	Summary

	Results
	Introduction
	Analysis
	Summary
	Future Work

	Bibliography
	Vita

